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Abstract

The standard model for high-energy physics (SM) describes fundamental interactions between subatomic particles
down to a distance scale on the order of 107'® m. Despite its widespread acceptance, a consistent and comprehensive
understanding of SM parameters is missing. Starting from a less conventional standpoint, our work suggests that the spec-
trum of particle masses, gauge couplings and fermion mixing angles may be derived from the chaotic regime of the ren-
ormalization group flow. In particular, we argue that the observed hierarchies of standard model parameters amount
to a series of scaling ratios depending on the Feigenbaum constant. Leading order predictions are shown to agree well with
experimental data.
© 2006 Elsevier B.V. All rights reserved.

PACS: 11.10.Hi; 12.15.Ff; 12.60.—i; 12.90.+b

Keywords: Renormalization group flow; Period doubling bifurcations; Feigenbaum scaling; Standard model parameters

1. Introduction

The generation structure of quarks and leptons stands out as one of the most intriguing puzzles of the stan-
dard model for particle physics (SM). The conventional formulation of the SM requires 19 free input param-
eters, among which 12 can be expressed in terms of empirical mass eigenvalues [1]. In addition, there is a set of
four inputs determined by the so-called Cabibbo-Kobayashi-Maskawa (CKM) matrix whose structure
includes three quark-mixing angles and one CP phase [18,19]. The remaining three parameters are two gauge
couplings (o, tery) and the strong CP phase. Recent experiments in neutrino physics have confirmed the exis-
tence of neutrino oscillations and masses and have subsequently triggered a host of challenging questions
[2-4]. There is a large body of proposed extensions of SM, each of them attempting to resolve some unsatis-
factory aspects of the theory while introducing new unknowns. In contrast with the line of thought pursued by
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these models, our work suggests that the spectrum of particle masses, gauge couplings and fermion mixing
angles may be derived from the chaotic behavior of the renormalization group (RG) flow. Although predictions
are found to match reasonably well experimental observations, we caution that our results are entirely preli-
minary and a concurrent analysis is needed to confirm or disprove their validity.

The standard procedure for investigating the high-energy domain of any effective field theory is to start
from the underlying RG flow equations, identify its fixed points and analyze the asymptotic flow of coupling
parameters in the basin of attraction of these points [5]. Taking an alternative approach, we treat the RG flow
equation as a generic iterated mapping and evaluate its chaotic regime after a large number of iteration cycles.
We conclude that the observed hierarchy of SM parameters amounts to a series of scaling ratios depending on
the Feigenbaum constant [27]. Since fermion mass scaling ratios and mixing matrices can be parameterized in
terms of the Cabibbo angle [6-8,28], this result supplies a natural connection between the Cabibbo angle and
the Feigenbaum constant. Moreover, it is found that the model can accommodate hypothetical generations of
both heavy and ultra-light fermions that are expected to emerge beyond the energy range of SM. A represen-
tative example in this regard is the fourth SM family neutrino whose detection is anticipated at future linear
colliders [9].

The paper is organized in the following way: Section 2 outlines the background of the RG flow equation
and derives the asymptotic link between the beta-function and Feigenbaum scaling for a generic effective field
theory. The emergence of a hierarchical pattern of observables based on this link is elaborated upon in Section
3 with specifics on SM hierarchies detailed in Section 4. The last three sections include a brief presentation of
future extensions, open questions and concluding remarks.

2. Beta-function and Feigenbaum scaling

Following the framework of RG transformations, all physical observables of an effective field theory can be
formulated in terms of a finite number of renormalized couplings [10]. These are defined at an arbitrary mass
scale u referred to as a “subtraction point” or “sliding scale”. One key result of RG is that any change in the
renormalized correlation functions in response to a variation in x must be compensated by a corresponding
change in the renormalized couplings. The outcome of this conjecture is contained in the so-called Callan—
Symanzik equation, which reflects how all observables of the theory change (or “flow”) with p. Beta-function
of the renormalization group flow is defined by the partial differential equation

Blg(w))= #@%—(’it) (1)

The zeroes of the beta-function, generically called fixed points, are of particular interest in the theory of RG
flows. Knowledge of the fixed points enables the study of high and low-energy domains of the effective field
theory [10,11].

We proceed from these preliminary considerations by introducing the following set of working
assumptions:

1. The effective field theory contains a single coupling parameter g = g(1).

2. The asymptotic flow of the coupling parameter toward the fixed point g" reflects the approach to the high-
energy domain of field theory.

3. The phase transition associated with the flow g(x) — g is an infinite-order phase transition.

The last two assumptions may be linked to framework of conformal field theories, which are considered
well suited for the description of high-energy physics [12-14]. A remarkable feature of infinite-order phase
transitions is that the correlation length ¢ has an essential singularity at the critical coupling g" given by

&~ exp(dlg—g'™) (2)

in which ¢ is a critical exponent and A a constant. Such behavior develops when the coupling parameter has a
vanishing mass dimension at g* and the beta-function may be represented as a quadratic function of g [12-14]
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where c is a real-valued coefficient. The discrete analogue of (3) reads
cAp
urt — &0 = Tgi +0(g,) ()

Here n is the iteration index and the subtraction point increment Ay represents a scalar fixed by resolution
requirements. Any realistic description of the RG flow in the high-energy domain must take into account sta-
tistical fluctuations stemming from the uncertainty principle. Because large fluctuations and non-equilibrium
microscopic processes dominate the physics on short time scales, the temporal resolution At, = #,11 — f, is
expected to vary as the inverse of time measurement, i.e. Af, ~ £71. Tt follows that the dimensionless subtrac-
tion point entering (4) and defined as Ji=jt/cApu acts as an autonomous control parameter. Following the on-
set of chaos in quadratic maps through period doubling bifurcations, it can be shown that the transition from
a period 2" super stable orbit to a period 2"+ super stable orbit occurs for a geometrically spaced series of
control parameters given by [15]

,[ln - Zloo = 5;'1 (5)
where 2" > | and where 8, = 4.669. .. is the Feigenbaum constant for the quadratic map. From the previous
discussion it can be inferred that fi,, represents the fixed point of the fi, series whose generic term is defined via

- . K Ko
= ~ =1 6
iy Ve (6)

It is important to emphasize that (5) is frame-independent, in the sense that its form is not affected by changing
the subtraction point and its limit j, = sfi,, [i,, = Sjie With s € {R}.

To streamline the derivation and without losing generality, we further assume that a plausible boundary
condition in (5) is Ji & 0. This ansatz may be justified by considering that the RG flow develops over suffi-
ciently large times (7, > 0).

The emergence of scaling (5) points out to an important result regarding the asymptotic form of the beta-
function. According to the guiding prescription of RG analysis, the evolution of the beta-function may be
studied through a sequence of renormalization steps consisting of iterated composition and rescaling opera-
tions [15,16]. Let B(g) designate the universal Feigenbaum—Cvitanovic function that satisfies the so-called ren-
ormalization equation

plo)=—ab(B(2)) (7)

in which o = 2.5029... After a large number of iteration cycles (2" > 1), the renormalized beta-function
B.(g)=(—a)"B*" (%, 1) approaches B(g) according to [15,16]

e T - M (2") £ ~

Blg) = lim (~a)' 6 (5 ) ®)
The renormalized beta-function obeys the recursive relation

~ & _ ~ ~ g

/3",1 (g) - a/))n (ﬂn <(Z>> (9)
such that

Ba(g) — Blg) ~ 6;"h(g) (10)

where /(g) is an analytic function. Moreover, since our focus is the coupling flow in the immediate neighbor-
hood of g*, where (g — g*) ~ O(¢), we may reasonably assume that B(g) ~ O(e). We arrive at

Ba(g) ~ 0,"h(g) (11)

The above power-law behavior reveals the asymptotic connection between the renormalized beta-function, on
the one hand, and Feigenbaum constant on the other. Next sections explore the impact of this result on key
observables describing a typical field theoretic framework such as the electroweak model or QCD.
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3. Hierarchical pattern of observables

Let Q be a generic observable of the effective field theory such as mass, gauge coupling or mixing angle.
Assuming that the dimension of Q is dp, that is

Q] = [ (12)
we may write, by dimensional analysis [17]
Qn,g(1) = 1 fan (8 (1) (13)
Constraining the function fy,(g(1)) to be independent of the subtraction point yields
dQ(p, g(1)) s dg
OB _ o, 1, (g(0) ~ exp (o [ =K (14
dp « Pl
On account of the RG interpretation previously developed, the dimensionless form of (13) may be written as
Qu(Jins () ~ I, exp[—83doF (g (fin), &7)] (15)
with
&(jtn) d
= % B g
Fgu,,,g*:/ — 16
6Em8)= | (16)

The integral (16) may be approximated around ji,, =~ 0 as

- O] RO
Flgli).g) = gy (g =% h(g*)

which implies that, for two arbitrary iteration indices,

Qn ([Lua g(ﬁn)) (m—n)d,
— =~ ) 0 18
Qm (,unn g(lum>) . ( )

We end this section by noting that dy = 1 if the observable (13) refers to a mass parameter and do ~ O(e) if it
refers to a gauge coupling or a mixing angle. The latter property is a direct consequence of (2) which implies
that coupling charges behave as marginal parameters in the immediate neighborhood of g [12,13]. In this case
it is reasonable to assume that, on a first-order basis, the index difference (m — n)dy for m,n>>1 may be
rounded off to the closest integer.

4. Scaling hierarchies of standard model parameters

A remarkable yet unexplained property of SM parameters is that they appear to be organized in a hierar-
chical fashion. The scaling ratio of two parameters in the hierarchy depends on integer powers of the Cabibbo
angle whose experimental best-fit value is 6 = 12.9-13° [23]. It is customary to work with the Cabibbo angle
in the equivalent trigonometric form, that is, 4 = sinfc = 0.223-0.225. Let us assume that the set of charged
lepton and current-quark masses, evaluated at an arbitrary energy scale, are denoted by the vector M; and

matrix M, respectively
m, mg
M;=[m, m, m;] M;=|m, my (19)
m,  my

The explicit set of scaling ratios in (19) is given by [6-8,21,26]:

me m
€ )»4 L /«LZ

my m,

m m 5

e B )t (20)
m; mp

m m
B ol S P

m, my,
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We note that the pattern of charged fermion masses depends on integer powers of 4>, Here, quark masses are
arranged in two columns each involving three independent flavors, namely (u,¢,1) and (d,s,b).

It is pertinent to bring up at this point the issue of fermion mixing and its parameterization. As it is known,
in the SM quark mass eigenstates are different from their weak eigenstates partners and the CKM matrix,
denoted by Vegw, relates these two bases by operating on the (—1/3) mass states (d,s,b) [18,19]:

d d
s =Verm| s (21)
v b
In terms of individual mixing components, we have
Vie Vs Vb
Verm= | Vea Ves Ve (22)
Vie Vi Va

Unlike (20), the CKM matrix expressed using the so-called Wolfenstein parameterization [20] is approximated
to the leading order by entries dependent on integer powers of Al

w

| A A
Verm=|—4 1 A (23)
»o=2 1

A similar matrix structure may be assigned to the recently discussed set of operators describing mixing in the
lepton sector [21,22]. Specifically, if the neutrino mass matrix m, and the charged lepton mass matrix 1, are
diagonalized through the following transformations

m,= U\,mflag U ‘T
. dia
my=Upm; Uy

then it can be shown that neutrino mixing, defined by the so-called Pontercovo-Maki-Nakagawa—Sakata
(PMNS) matrix, may be represented as

(24)

Upmns = U U, (25)
In one plausible scenario, one finds [21]

PUNPEINPE
mmf ~m? 2> 2

A3 a2

' A;:‘ 1;3 2 (26)
UmS 2yl ~m, |22 22 2

¥ ¥ 1

The standard parameterization of the PMNS matrix is formulated with the help of three mixing angles
(012, 023,013). According to the above scenario, we have

sin 0y, = A
sin 03 = A44° (27)
sin 023 = B)uz

where A, B are positive numbers of order unity.

! To simplify the argument, CP-violating phases are neglected here.
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Finally, it is instructive to recall that SM coupling charges and weak boson masses satisfy the following
scaling pattern [23]

(&) i (2) -

— ] Y AW — ) ~w

i; , 835 (28)
()1

M

Here, ¢* = 470em, g3 =4no, gisiémak stand for the electromagnetic, weak and strong coupling charges and
Jy is the “sine” squared of the Weinberg angle, whose magnitude is nearly identical to the nominal value of
the Cabibbo angle (Aw = sin®0yw = 0.229) [10,23].

As stated at the beginning of this section, relationships (19)~(28) provide ample analytical evidence that SM
parameters display a hierarchical dependence on the Cabibbo angle. This observation is consistent with (18)
and strongly suggests a direct connection between A and d5. In fact

A~ 8yt =0214. . (29)

which leads one to conclude that the Feigenbaum constant for the quadratic map plays a central role in the
observed patterns of particle masses, gauge couplings and fermion mixing angles.”

5. Future extensions

As it is known, the SM does not fix the number of fermion families. For example, current data allow for
additional generations of leptons and quarks if the mass of the fourth family neutrino is larger than Mz/2 [9].
At the other end of the energy scale, various studies on neutrinoless double beta-decay processes point to a
spectrum of ultra-light neutrinos with masses well below the eV threshold [25]. As the ladder-like pattern
of SM parameters encoded in (18) and (19) is not bounded by fixed limits on the index difference (n — m)d,
one may infer that new fermion generations arise beyond what is known today. The object of this section is to
formulate first-order predictions on the hypothetical ultra-light and super-heavy fermion masses that may be
observed in future experiments. The most straightforward extrapolation of (20) on account of (29) gives

My ~ m‘,gégz <4.6x107%eV
mps ~ mrég = 38.76 GeV

g ~ m,,552 =0.107eV

Tgs ~ m,5§ =3.95TeV

(30)

Here, /4, ¢4 (I5, ¢5) denote the ultra-light (super-heavy) families of leptons and quarks, respectively, whereas
m,, (< 1eV), mg, m,, m, are best-fit fermion masses evaluated at the Z boson scale [9,26]. We find that these
numbers agree well with predictions derived from the models developed in [9,25].

6. Open questions

The primary goal of this work was to present arguments that support an unexpected connection between
the Feigenbaum scaling and RG, on the one hand, and SM hierarchies, on the other. Needles to say, our study
does not provide a rigorous and comprehensive account of the physics underpinning the generation structure
of the SM. Many questions remain open. Their satisfactory resolution requires a more extensive and refined
plan of attack as well as a wealth of currently unavailable experimental data. Although a complete list of ques-
tions is not a practical option, we believe that among the most pressing issues that need to be dealt with are the
following:

2 A similar scenario is analyzed in [24] where mass generation in the lepton sector arises from the dissipative chaotic dynamics of the

basic weak boson-fermion system.
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1. What explains the small numerical difference 1 — 52_' ~ 9 x 10737 Are contributions related to higher non-
linear terms in (3) and (4) relevant to this context?

2. Why is the mass hierarchy dependent on integer powers of 5;2 whereas the gauge coupling and mixing angle
hierarchy depend on integer powers of d, 'y

3. What mechanism is responsible for maintaining the parameter hierarchy in the transition from the high-
energy domain of field theory to the low-energy domain of the SM?

7. Concluding remarks

We have suggested that the chaotic behavior of the RG flow offers valuable insights into the generation
puzzle of the SM. In particular, it was argued that the observed hierarchies of standard model parameters
amount to a series of scaling ratios depending on the Feigenbaum constant. A direct link was found between
this constant and the Cabibbo angle. Future generations of “would-be” heavy and ultra-light fermions may be
extrapolated using this dynamical model.
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